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Order Statistics for First Passage Times in 
One-Dimensional Diffusion Processes 
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The problem of the statistical description of the first passage time tj.,v to one or 
two absorbing boundaries of the first j of a set of N independent diffusing par- 
ticles in one dimension is revisited. An asymptotic expression for large N of the 
generating function of the moments of tj. ~ is obtained, and explicit expressions 
for the first two moments are presented. The results are valid for a specific but 
broad class of initial distributions of particles and boundaries. The mean first 
passage time of the first particle (tEN) and its variance are compared with 
numerical estimates for an initial distribution in which all particles are placed at 
the midpoint of the diffusion region. 
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1. I N T R O D U C T I O N  

The p r o b l e m  addressed  in this pape r  is re la ted  to the extensively s tudied 
t r app ing  p r o b l e m  (see refs. 1-3 and  references therein)  in which a diffusing 
par t ic le  is a b s o r b e d  by a trap.  We s tudy  the o rde r  stat ist ics of  abso rp t ion  
t imes of  a s e t  of independen t  diffusing par t ic les  in one d imens ion  for a 
given conf igura t ion  of  boundar ies ,  that  is, we give a s tat is t ical  descr ip t ion  
of the t ime t j .  N spent  by the j t h  of  N diffusing walkers  inside an interval  
before being a b s o r b e d  by  the bounda r i e s  ( t raps) .  Usua l ly  only first- 
passage- t ime p rob lems  of  a single par t ic le  are s tudied,  whereas  in real i ty  a 
finite n u m b e r  of  par t ic les  may  be present  s imul taneously .  This  d is t inc t ion  
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may be important if the first or first few particles that arrive at an absorber 
lead to a trigger effect. 

The order statistics of a set of random walkers on infinite lattices of D 
dimensions (D integer) was studied by Lindenberg et al. ~4~ The order 
statistics of diffusing particles in one dimension, with some discussion of 
higher dimensions, was studied by Weiss et al. ~5~ However, some of the 
results given there were incorrect due to the fact that only the main term 
of the asymptotic expansion for large N of the generating function of the 
moments was calculated correctly. Here we shall rectify the error and also 
carry out the asymptotic expansions to higher orders in order to find the 
ma#7 term of the asymptotic expansion of the variance of the first passage time. 

In Section 2 we give a short review of basic formulas for order 
statistics of diffusing particles in one dimension and we present the class of 
initial distributions of particles for which our results are valid. The 
asymptotic analysis for large N of the generating function of the moments 
of the first passage time is carried out in Section 3. In Section 4 we obtain 
explicit expressions for the first two moments of tj.N, and a comparison 
with numerical estimates is carried out for particles initially placed at the 
midpoint of the diffusion region. The results are summarized and discussed 
in Section 5. 

2. B A S I C  F O R M U L A S  

Let G(t) be the probability that a single diffusing particle has not been 
absorbed by the boundaries at either end of a spatial interval in the time 
interval (0, t), and let g ( t ) = - d G ( t ) / d t  be the first-passage-time density. 
The probability density qj, N(I) for the absorption time of the j th  out of N 
indistinguishable and noninteracting particles is ~5'6~ 

qj.^,(t)= j ( N ) g ( t ) [  1 -  G(t)] i - I  GN-J(t), j =  1,2 ..... N (2.1) 

With this expression, the generating function of qz N can be written as 

N 

QN (z; t ) =  2 qJ.N( I) Zj-I  =Ng(l){G(l)--b[l  - G ( t ) ]  z} N- '  
j = l  

(2.2) 

The mth moment of the absorption time of the j t h  out of N diffusing 
particles is 

Ftj, N(m) = t"'qj.N(l ) dt (2.3) 
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and its generating function can be written by means of Eqs. (2.2) and 
(2.3) as 

N ,x',~ 

UN. ,,,(z) = ~ It z ~(m) z j -  l = Io t"'QN(z, t) dt (2.4) 
j = l  

Upon integration by parts, Eq. (2.4) becomes 

m t " ' - ' { ( G ( t ) + [ 1 -  G(t)] :)W--zN} dt UN,,,,(z) = ~  (2.5) 

We seek explicit expressions for pj, N(m) when j < N and N,> 1. This can be 
accomplished through the evaluation of this integral for large N: 

m i '~ t .... J e x p { N l n [ 1 - h ( t ) ( 1 - z ) ] }  dt (2.6) UN'm(Z)"~--  o 

The mortality function h ( t )=  1 - G ( t )  is the probability that the particle 
has been absorbed in the time interval (0, t). In terms of the probability 
h(x, t) that a particle that starts at x will be absorbed by the boundaries 
placed at x = 0 and x = L in the time interval (0, t), and the initial density 
probability function p(x), 

L 

h(t)= fo p(x) h(x, t)dx (2.7) 

where (cf. ref. 6, Section X.5), 

h(x, t)= 2 [ 
[ t'mL-x)-+ (mL+x)] 

I-l)"' \ 2,/TbS/J 
(2.8) 

and ~b(x) is the standard normal distribution. 
In the remainder of this paper we express all times t in units of 

L2/8D a n d a l l  distances in units of L, that is, times and distances are 
dimensionless. All other functions are suitably rescaled to dimensionless 
form as well. The results of the present paper are valid for all those initial 
distributions (and boundary conditions) that lead to a mortality function 
of the form 

h(t) ~at~e-'~ + h~ t) (2.9) 
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for t small, where a, ct, to, and h I are dimensionless constants.  Clearly, the 
associated initial distributions vanish at the boundaries  since the mortal i ty  
function is zero at t = 0 .  We keep the term h , t  because it contr ibutes 
significantly to the moments  of  the absorpt ion time. The initial distribution 
of  particles p ( x ) = & ( x - I / 2 )  with absorbing boundaries  at x = 0 and x = 1 
leads to the mortal i ty function (2.9) with a = 4 / x / ~ ,  to = 1/2, h~ = - 1, and 

= 1/2. This same initial distribution with the left absorbing boundary  at 
x = 0 but with the right absorbing boundary  placed at x > 1 also leads to 
(2.9) with the same values of  to, h~, and ~t, but  now with a = v/2-/g. 

More  generally, one finds the mortal i ty  function (2.9) for initial 
distributions where p ( x ) =  0 when x is outside the open interval (Xl, x2) 
(with 0 < x~ < x2 < 1 ) and where lim ...... -o p ( x ) / ( x -  Xo)" = Po ~ 0. Here Xo 
stands for xj or  x2, and Po stands for p~ or pz. tS~ In this case, 

/ ' (n  + 1) Po ~ 1 3 

,,,+ . . . .  +z, 4x~ 
a = 2 _  _ v / ~ x o  t o = 2 x s ,  h I -  ,, ~ = n +  (2.10) 

with Xo=X ~ and p o = p l  if x~ < l - x 2 ;  x 0 =  l - x 2  and p o = p z  if x~ > 

1-x2; and Xo=X~ and p o = P l  + P 2  if .x'~ = 1 - x  2. This functional form is 
also valid for systems with these initial distributions but with a reflecting 
barrier, say at x = 0 ,  and a trap, say at x =  i. In this case x o = x 2  and 

Po = P2. 

3. A S Y M P T O T I C  E X P A N S I O N S  

We now use the general form (2.9) to evaluate the asymptot ic  expan- 
sion for large N of  the generating function of  the moments ,  UN.,,(z). We 
write Eq. (2.6) as 

UN" m(-)  = U~lIm(Z) 3ff f[( :c) [ . ]  ~u.,,,,", (3.1) 

where 

U ~'  ( 7 ) ~  m ~ t .... z) N.m- ~'i~__Zfo dt IF(t, N, (3.2) 

and 

U (~)tz~.,. m (~-' t" '-  u,,,, J~7------i dt 'F ( t ,N , z )  (3.3) 
�9 i - - z a ~  

F(t, N, z) = [1 - h(t)(1 - z ) ]  N (3.4) 
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The time r is chosen so that (i) h ( t )=  at ~ e x p ( - t o ~ t )  is a good aproxima- 
tion to h(t) for 0 ~< t ~< r and (ii) F(r, N, z) ~ 1 for z small, say [z] ~ 1. The 
first condition implies that h(t) should be small so that 

F(t, N, z)=F(t, N, z)[1 + s 

with P( t ,N , z )=exp[ -N(1 - z )h ( t ) ] .  The terms ~~ can be 
neglected for large N (cf. below): 

U(r) ~.)..~ m Irdt t . ,_]~( t ,N,z)  (3.5) 
N ,  m ' , -  - ~ 1 - _- o 

We estimate r by requiring that 

[e -Nh(~) -- e-Nh~r)[ - - [h ( r ) -h ( ' c ) ]Ne  -N~(')-- 1/k 

where k ~> 1 is a large arbitrary constant that, for convenience, we set equal 
to 1 / [h ( r ) -h ( r ) ] .  Therefore, we find that r satisfies 

exp[ - N h ( r ) ]  = 1/N (3.6) 

Approximate solution of this equation yields 

t o  
r ~  (3.7) 

In N - I n  In (N) 

It should be noted that, for large N, e x p [ - N h ( t ) ]  changes abruptly near 
t - -  r so that the estimates of r obtained from (3.7) may lead to inaccurate 
results if they are used to evaluate e x p [ - N h ( r ) ] .  Also note that (3.6) 
implies Nh2( r )= ln  2N/N~ 1 for large N. 

Because F(t, N, z) is a monotonically decreasing function of t and N, 
condition (ii), F(r, N ,z )~  1, allows us to neglect the contributions of 
U(~-) t-~ to the absorption time moments compared with those of U~,,,(z) 
provided that F(t,N,z) goes to zero sufficiently quickly. This is a 
reasonable assumption, at least for the physical systems described in 
Section 2. For example, it is well known (~1 that for the system with two 
absorbing barriers at 0 and L 

4 ~  1 
-~-~sin[(2n+ l )nx]e  -~2''+1'2"'-' (3.8) h(x, t)= l - ~  

n = o 1l Jr- l 

For times beyond r only a finite number of modes is important. Therefore, 
from Eq. (2.7), G ( t ) - l - h ( t )  is determined by a sum of terms propor- 
tional to e x p [ - ( 2 n  + 1)~nZt] (17 =0 ,  1, 2,...). The contribution of vU.tZC'~l,, to 
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the moments is consequently negligible. In particular, the contribution 
from the interval (r, or) to It1. N(1) obtained by setting z = 0 in Eqs. (3.3) 
and (3.4) is a sum of terms of order e x p [ - ( 2 n + l ) Z r N ]  that, taking 
Eq. (3.7) into account, are negligible relative to the contributions from the 
time interval (0, r). From here on we assume that tl(~) is negligible V N ,  m 

compared to U(~),,,. 
In order to evaluate U~),,,(z) we write Eq. (3.5) as 

where 

mt., f , , , (2) u ~ . ) ~ ( z )  = o i - j  

f ~/to f,,,(2) ~ d x x  m - '  exp[ - p 2 ( 1  + tohlx)  ] 

(3.9) 

(3 .1o)  

2 = N a t , ( 1  - z ) ,  p = p ( x ) = x ' e  - ' /"  (3.11) 

Using p as the variable of integration and writing the exponential term as 
the series 

exp[ -- ).p( 1 + t o h, x) ] = exp( - 2p)( 1 - 2pt o h t x + .. .  ) 

(which converges for 0 <~x <~ r/to when N is large), one finds that Eq. (3.10) 
becomes 

f,,,(,~) ~ ~o) , l ,  ~ f , ,  (2 ) - -h i  f , ,  , (2) (3.12) 

where 

~ xm+"+l(P) 
f~;)(2) 2"t'g ~ e-Z" 

= ~o I + ~.x'(p) 
(3.13) 

with e =  ( r / to )~exp( - to / r ) .  It is important to note that Eq. (3.7) implies 
h(r) = ln(N) /N,~  1 and N h ( r ) =  In(N)>> 1, or, in terms of the new variables, 
e ,~ 1 and 2e >> 1. 

We shall evaluate these integrals by means of the procedure used in 
ref. 5. In order to obtain the function x(p),  we take logarithms of both sides 
of Eq.(3.11) and write u = x - ~ - o ~ l n x ,  where u = - l n p .  We invert this 
relation, x ( p ) = [ u + ~ ( p ) ]  -I ,  and note that the function ~(p) satisfies 
l imp_o[~(p)/u ] = 0. Neglecting terms Co(~3/u3), we find 

~ln u + ( ~ + U ) u - -  ~ = 0  (3.14) 
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and, neglecting the quadratic term ~-/u 2, we get 

-o:u-'  ln u + [O(u-'- ln u) (3.15) 
U 

It should be noted that this first-order solution is the negative of the one 
given in ref. 5. This has important consequences. For  example, the correc- 
tion terms in the asymptotic expansion of the first-passage-time moments 
:lj, u(m) differ from those given in ref. 5; this implies that the ma#~ term of 
the variance is also different. In the rest of this paper we shall display the 
asymptotic expansions up to the order necessary to calculate the main term 
of the variance. The solution of the quadratic equation (3.14) that agrees 
with the first-order solution (3.15) is 

r 
- = - ~ u - t  In u + c~-'u-'- In u + C(u-3 in 3 u) (3.16) 
U 

With this we then find 

x~'(p) 
1 + ~c(p) 

-u-~'I1 +yoeu -l lnu-o~u -t + y ( l  + ~-~--~) oc2u-2 ln2 u 

- (2y + 1 ) 0cXu-2 In u + (X2U--2 Jr- 60(/-/--3 in 3 U) 1 (3.17) 

Inserting this result into Eq. (3.13) and neglecting the contribution from 
terms of order u - 3 - q n 3 u  (where y = n + 2  for m = l  and y = n + 3  for 
m = 2) or smaller, we find 

fll~ = 12 + 2oU3 - 0~I3 + 3(x2K4 - 5~-2J4 + 0C214 (3.18) 

f m  I(2) = 13 + 3cxJ4  - -  o~I4 + 6~ 2 K  5 - 7c~'-J 5 - e2I 5 (3.19 ) 

where 

/ =  dP e - ~ - .  m 
p ln/ '(l/p) 

1 1 C It B (3.20) 
ll - 1 ln" - l 2 in/, ). 4- ~ in/, + i 2 

~ _ _  In[In(I /p)]  Jl,= dP e-~? 
p ln"(1/p) 

1/(:l--1)+lnln2 C l n l n 2  
..~ ( p _  1) l n ,_ l  2 ln/, 2 (3.21) 

Io__ lnZ[ln(1/P)] K/~ = d P  e - 2P 
p ln/'(1/p) in/, - 1 2 

2 2 1 n l n 2  In 21n2] 
(/ ,_ 1) 3 t-(Ft_ 1)2+ ~--~--1 J 

(3.22) 
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Here C "~ 0.577215 is the Euler constant and B = rt2/6 + C 2. The integrals 
It, and Jj, were evaluated in ref. 5, although the last terms in Eqs. (3.20) and 
(3.21) were not computed there. The method for evaluating Kt, is similar. 
For n = 1, we obtain 

f ] ' l (2)  = 3toi4, f~ll(2)=4to15 (3.23) 

With Eqs. (3.9), (3.12), and (3.18)-(3.23), one finds the generating 
function of the moments of first order (m = 1 ) and second order (m = 2): 

~ l n l n 2 - C  1 t o  1+  
U N ' l ~ l - z l n 2  ln2 +1--n5-2-2 [~176 

- (2ctC + ~2) In In 2 + ct z In 2 In ct] } (3.24) 

_1 t o { 1 + 2  ~ l n l n 2 - C  I 
UN'9~I- z ln22  In2 +1--~-2 [2~176 

- -2 (3~C+ ~z) In In 2 + 3~ z In z In 2] "~ (3.25) 
J 

4. F I R S T - P A S S A G E - T I M E  M O M E N T S  

The asymptotic values for large N of the first two moments of the first- 
passage-time distribution, /~j. N(1) and ltj. u(2), are the coefficients of the 
Taylor expansion in powers of z of UN. ~ and UN. 2, respectively. Therefore, 
the mean value of the first passage time of the first of N particles (N large) 
is (see Appendix) 

, o  { 
( tI.N) =-ltl, N(1)~l~O N 1 -~ 

ct In In 2 o N -  C 1 
+ - -  [ctC+ B-toh~ 

In 2oN In 2 2oN 

- (2~C + ct 2) In In 20N + c~ 2 In 2 In 2oN]}  (4.1) 

where 20 =2(z=O)/N=at~. Only the main term of this expression agrees 
with that of ref. 5, and the corrections are nonnegligible: assuming 
reasonably that 20 is of order 1, and even with N as large as 1023, the first 
correction term of Eq. (4.1) is about 5% of the main term. It is not difficult 
to prove from Eq. (3.24) that 

to ( 1 1) 
(tj, N)--Ftj, N(1)~(tI.N)-t in 22o N 1 + ~ + . - -  + j _ l  (4.2) 
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Fig. 1. Inverse of the mean first passage time ( t  L N) to the absorbing boundaries of the first 
of N particles initially placed at the midpoint of the diffusing region, plotted as a function of 
In N. The circles correspond to the numerical estimate and the broken and solid lines 
correspond to the zeroth- and second-order asymptotic formula, Eq. (4.1). 

From this equation we can estimate the flux of particles absorbed by the 
boundaries when the j t h  particle is trapped: 

~bj = [ltj+ ,, N( l ) --Itj, N( 1 ) ] --' ~ [ln'-(2oN)/to] j 

This means that for small times the number of absorbed particlesj(t) grows 
exponentially: 

j(t)~exp(ln22~ (4.3) 
k to / 

The second moment of the first passage time of the first of N particles 
(N large) is, from Eq. (3.25) (see Appendix), 

to {I + 2  
( tL N) = #  ,. N(2) ~ in 2 )toN 

In In 2 o N -  C 1 
- b - -  

In 2o N In-' 2oN 

x [2~(1 +C)+3B-2tohn 

- 2(3~C + ~2) In In 2oN + 3~ 2 In-" In 20 N] ) (4.4) 

For the j t h  particle, the expression is 

t~ 2 1 + ~ + . . -  + (I~N) "~ (t~'N) +ln 3 2o~ j - -  1 (4.5) 

822/85/3-4-14 
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Fig. 2. Inverse of the standard deviation (a t .  to) of the first passage time of Fig. 1, plotted 
as a function of In-' N. The numerical estimate is represented by circles. The solid li,le 
corresponds to the asymptotic formula, Eq. (4.6). 

From (4.1) and (4.4) one finds the variance of the first passage time of the 
first particle: 

~ 7r2 to (4.6) al'u=(t;'N)--(tl"N)2~ 6 ln4~.o N 

Figure 1 shows the mean value ( t l ,  N) of the first passage time of the 
first particle of a set of N particles whose initial distribution is p(x)= 
5(x-L~2) obtained by numerical integration of (t'[',u)=m~'dt 
t .... I[ 1 - -h( t ) ]  U for m = i. The function h(t) is obtained from Eq. (2.7). we 

choose L/x/~=2 so as to make (t1,1) equal to unity. The value of 
(tl.N) given by Eq. (4.1) is also shown in Fig. 1. One can see that the 
asymptotic formula leads to good results even for a few particles. In Fig. 2 
we compare the standard deviation al.N with that obtained from the 
numerical integration of (t~. u)-  We again see that the agreement is good 
even for only a few particles. 

5. CONCLUSIONS 

We have studied the problem of the order statistics of the first passage 
times to certain configurations of boundaries, in one dimension, of a set of 
N>> 1 diffusing particles when the mortality function is of the particular 
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form (2.9) for short times. We have shown how to calculate the generating 
function of the first-passage-time moments of arbitrary order and obtained 
explicit formulas for the first two moments. This has allowed us to present 
explicit expressions for the mean first passage time of the j t h  particle 
(tj. N) and for (t~ N)" These expressions agree with those of ref. 5 only in 
the leading term. As a consequence, the variance is completely different, 
indeed significantly smaller, than that in ref. 5. 

As noted in ref. 5, the extremely mild (logarithmic in N) dependence 
of the mean first passage time of the first of N walkers to the ends of an 
interval is somewhat surprising, since one might expect the first walker to 
go to the boundary essentially ballistically. The reported results show that 
this is not the case. The nested logarithmic correction terms indicate a 
series that converges slowly. Similar dependences are observed in related 
problems, e.g., in the calculation of the span of one-dimensional multi- 
particle random walks. ~8~ 

The order statistics of the diffusing process describes the rate of 
absorption of the diffusing particles at the boundaries. We found that 
initially the flow of particles grows exponentially in time with a com- 
plicated dependence on the initial number N of particles [see Eq. (4.3)]. 
Finally, we have shown that, for an initial distribution of particles in the 
form of a Dirac delta function, the asymptotic formulas obtained lead to 
good estimates of ( t j . u )  and its variance even for N not too large, say 
N > 2 0  for (tj.u) and N > 1 0  for the variance, when the second-order 
asymptotic formulas are used (see Figs. 1 and 2). 

A P P E N D I X  

In this appendix we use simple arguments to estimate the first 
moments (t';'. N) of the first passage time of the first particle. The key point 
is that the function F(t, N , z = 0 )  defined from Eq. (3.4) approximates a 
step function for large N:F(t,N,O)~P(t,N,O)~O(t--~o) (0 is the 
Heaviside unit step function) so that 

t n  t~t ( t l , ^ , )~m dtt .... IP(t,N,O)=ro 

We estimate ro as the time for which F(ro, N, 0 ) =  1/2. Assuming that 
ro is small enough in order that F(t, N, 0 ) ~ e x p [ - - N h ( t ) ]  for t~<ro, we 
obtain 

to (A1) 
r~ ~ i n  N + l n  r ~ + l n  a - i n  2 
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or r o ~ to/ln N for large N. Inserting this last equation into the right-hand 
side of Eq. (A1) for large N, we obtain 

to 1- a In In N + const  ] 
ro ~ i-n--N [ 1 + InN + ... j (A2) 

With Eq. (A2) we then get an estimate of (I';~,N) that agrees with the 
rigorous results of Eqs. (4.1) and (4.4). 
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